
Interpreting IoT Data
with Sensor-based Linked

Open Rules (S-LOR)

Creator Amelie Gyrard (Eurecom - Insight - NUIG/DERI, Ecole des Mines Saint-Etienne)
Designed and implemented by Amélie Gyrard, she was a PhD student at Eurecom
under the supervision of Prof. Christian Bonnet and Dr. Karima Boudaoud.
S-LOR was maintained since she was a post-doc researcher at Insight within the IoT
unit led by Dr. Martin Serrano and involved in the FIESTA-IoT (Federated
Interoperable Semantic IoT/Cloud Testbeds and Applications) H2020 project.
S-LOR is still maintained since she is a post-doc researcher at Ecole des Mines Saint-
Etienne (EMSE) and within the Connected Intelligence, Knowledge Representation
and Reasoning team.

Send Feedback Do not hesitate to ask for help or give us feedback, advices to improve our tools or
documentations, fix bugs and make them more user-friendly and convenient:

Platform URL http://linkedopenreasoning.appspot.com/
Documentation
URL

http://linkedopenreasoning.appspot.com/documentation/SLORDocument
ation.pdf

(to check latest updates)

Google Group https://groups.google.com/d/forum/m3-semantic-web-of-things
Last updated June 2017

 APIs, web services (relevant for the IC 2017 tutorial)

 Refactoring and various improvements

June 2016

 Refactoring code (SLORWS.java, slor.js, renaming files, etc.)

 Update the documentations

 Explain better the web services + screenshots

 Update the Javadoc

Created June 2016

Status

 Work in progress

Goal This documentation enables understanding the S-LOR tool:

 Interpreting IoT Data

 APIs, RESTfful web services

 Deduce meaningful knowledge from sensor data

 Reasoning engine

 Dataset of interoperable rules

Technologies M3 ontology
M3 framework
LOV4IoT
LOV4IoT RDF dataset

http://www.fiesta-iot.eu/
http://www.fiesta-iot.eu/
http://linkedopenreasoning.appspot.com/documentation/SLORDocumentation.pdf
http://linkedopenreasoning.appspot.com/documentation/SLORDocumentation.pdf
https://groups.google.com/d/forum/m3-semantic-web-of-things

Jena Rule Engine
Jena Framework

 SLOR Web Services .. 4

1. Getting all rules related to a specific sensor... 4

2. Getting all projects employing a specific sensor ... 5

 SLOR Architecture ... 6

 Why SLOR? .. 6

1. Reusing domain knowledge from LOV4IoT .. 6

2. Sharing and reusing based approach .. 7

3. Dataset of interoperable rules .. 8

4. Jena inference engine ... 9

5. Algorithm .. 9

 DEMOS & GUIs .. 9

1. Demo ... 9

 S-LOR Code .. 11

1. WAR/RULES ... 12

 Code example: Interpreting IoT data and getting M3 suggestions .. 12

1. Getting a template .. 13

2. Loading M3 domain knowledge.. 13

3. Executing rules .. 13

4. Executing SPARQL query ... 14

5. Finishing the application ... 14

6. Code summary .. 15

 S-LOR Limitations .. 15

 S-LOR Citations .. 16

 References .. 16

FIGURE 1. WEB SERVICE TO GET RULES FOR A SPECIFIC SENSOR ... 5
FIGURE 2. WEB SERVICE TO GET PROJECT USING A SPECIFIC SENSOR .. 6
FIGURE 3. INTEROPERABILITY ISSUES REGARDING REASONING... 7
FIGURE 4. RULE EXAMPLE IMPLEMENTED FOR BEING COMPLIANT WITH THE JENA FRAMEWORK 8
FIGURE 5. SPARQL CONSTRUCT RULE EQUIVALENT TO JENA RULES ... 8
FIGURE 6. FINDING RULES TO INTERPRET SENSOR DATA WITH S-LOR .. 10
FIGURE 7. S-LOR DEMO .. 10
FIGURE 8. JENA RULES FROM THE S-LOR SEMANTIC RULE REPOSITORY ... 11
FIGURE 9. SLORWS.JAVA FILE .. 11
FIGURE 10. RULE DIRECTORY .. 12
FIGURE 11. CODE EXAMPLE TO INTERPRET IOT DATA AND GET M3 SUGGESTIONS....................................... 15

IoT Internet of Things (IoT)

LOV Linked Open Vocabularies

LOV4IoT Linked Open Vocabularies for Internet of Things

M3 framework Machine-to-Machine Measurement (M3) framework

S-LOR Sensor-based Linked Open Rules

Jena A framework to build Semantic Web Applications

 SLOR Web Services

To contribute or understand the web services:

Getting all rules related to a
specific sensor

http://sensormeasurement.appspot.com/slor/rule/{sensorType}

E.g.
http://sensormeasurement.appspot.com/slor/rule/BodyThermometer

sensorType should be compliant with the classes referenced with M3
ontology

Getting all projects
employing a specific sensor

http://sensormeasurement.appspot.com/slor/{sensorType}

E.g.
http://sensormeasurement.appspot.com/slor/BodyThermometer

sensorType should be compliant with the classes referenced with M3
ontology

http://sensormeasurement.appspot.com/slor/rule/{sensorType}

The parameter sensorType should be compliant with the classes referenced with M3 ontology.

The web service returns all rules using this sensor type. It provides “IF THEN ELSE” rules readable for

human and URLs for getting the Jena rule implementations.

Example: http://sensormeasurement.appspot.com/slor/rule/BodyThermometer

http://sensormeasurement.appspot.com/slor/rule/BodyThermometer
http://sensormeasurement.appspot.com/slor/BodyThermometer
http://sensormeasurement.appspot.com/slor/rule/%7bsensorType%7d
http://sensormeasurement.appspot.com/slor/rule/BodyThermometer

File to get the implementation of the Jena rule

Result of the rule: Deduce new knowledge

Figure 1. Web service to get rules for a specific sensor

The web service returns all projects using this sensor type. The projects are those referenced within

the LOV4IoT RDF dataset.

Example: http://sensormeasurement.appspot.com/slor/BodyThermometer

http://sensormeasurement.appspot.com/slor/BodyThermometer

Figure 2. Web service to get project using a specific sensor

 SLOR Architecture

See paper: Sensor-based Linked Open Rules (S-LOR): An Automated Rule Discovery Approach for IoT

Applications and its use in Smart Cities. 3rd International ACM Smart City Workshop (AW4city) in

conjunction with 26th International World Wide Web Conference (WWW 2017), April 3-7 2017,

Perth, Australia. Amelie Gyrard, Martin Serrano, Soumya Kanti Datta, Joao Bosco Jares, Muhammad

Intizar Ali

PDF: http://www.eurecom.fr/fr/publication/5144/download/comsys-publi-5144.pdf

 Why SLOR?

Sensor-based Linked Open Rules (S-LOR) is an approach to share and reuse the rules to interpret IoT

data [2]. They provide interoperable datasets of rules compliant with the Jena framework and

inference engine.

The rules have been written manually but extracted from the Linked Open Vocabularies for Internet

of Things (LOV4IoT) dataset, an ontology/dataset/rule catalogue designed by domain experts in

various applicative domains relevant for IoT such as healthcare, agriculture, smart home, smart city,

etc.

Figure 3. Interoperability issues regarding reasoning

TO DO: Explain owl restrictions, interoperability issues

S-LOR has a common vision with the following approaches:

 The BASIL (Building APIs SImpLy)1 framework combines REST principles and SPARQL
endpoints in order to benefit from Web APIS and Linked Data approaches [1]. BASIL reduces
the learning curve of data consumers since they query web services exploiting SPARQL
endpoints. The main benefit is that data consumers do not need to learn the SPARQL
language and related semantic web technologies.

 Linked Edit Rules (LER)2 [3] is a recent approach similar to the Sensor-based Linked Open
Rules (S-LOR) to share and reuse the rules associated to the data. This work has been not
applied to the context of IoT. LER is more focused on checking consistency of data (e.g., a
person’s age cannot be negative, a man cannot be pregnant and an underage person cannot
process a driving license). LER extends the RDF Data Cube data model by introducing the
concept of EditRule. The implementation of LER is based on Stardog’s rule reasoning to
check obvious consistency.

1 http://basil.kmi.open.ac.uk/app/

2 http://linkededitrules.org/

Data has been unified thanks to the M3 taxonomy, a cornerstone component for building a dataset

of interoperable rules. The picture shows the implementation of the rule based on the M3

taxonomy: the hierarchy of quantity kinds and units.

Figure 4. Rule example implemented for being compliant with the Jena framework

Since we are using the Jena framework, within this project, intuitively we use the Jena inference

engine and Jena rules for the implementation.

After the implementation, we realized that the same rules can be built using the SPARQL query

language with the keyword “CONSTRUCT”.

Both methods have the same goal updating the knowledge graphs or triplestore with additional

information (more triples).

SPARQL construct encourages interoperability since SPARQL is a W3C recommendation.

Figure 5. SPARQL CONSTRUCT RULE equivalent to Jena rules

SWRL

Logic-based reasoning

https://jena.apache.org/documentation/inference/

Algo:

 Input: Dataset semantically annotated according to the FIESTA-IoT ontology including the
M3-lite taxonomy

 Output: Dataset updated with more triples, High level abstraction

 Algo:

o Load the dataset or triplestore

o Load the rules of subset

o Execute the reasoning engine

o Update the dataset or triplestore with more triples

 DEMOS & GUIs

Go to this web page: http://www.sensormeasurement.appspot.com/?p=swot_template

 Select a sensor to find all rules interpreting sensor values as depicted in Figure 6 (e.g.,
Precipitation)

 The demonstration will show all rules related to the sensor chosen by the user to interpret
sensor values.
(e.g., if precipitation = 0 mm/h then NoPrecipitation)

 You have both the rule for humans and for machines (click on the LinkedOpenRules link)

http://www.sensormeasurement.appspot.com/?p=swot_template

Figure 6. Finding rules to interpret sensor data with S-LOR

The users can choose a device type from the drop-down list. This drop-down list queries in the back-

end the M3 ontology (V1) or M3-lite taxonomy (V2).

=> used M3-lite taxonomy -> file with Jena rules
implemented

1) Choose
device type

Users

2) Automatically built by S-LOR

Figure 7. S-LOR demo

The users can click on the URL to get access to the file with already implemented Jena rules. Figure 8

shows two rules:

 IF precipitation measurement >50 and < 100 mm/h THEN Extremely Heavy Rain

 IF precipitation measurement = 0 mm/h THEN No Precipitation.

Figure 8. Jena rules from the S-LOR Semantic Rule Repository

 S-LOR Code

Figure 9. SLORWs.java file

S-LOR is a component of the M3 framework.

M3 on Github: https://github.com/gyrard/M3Framework

M3 documentation to set up the code:

http://sensormeasurement.appspot.com/documentation/M3DeveloperDocumentation.pdf

You will find in this directory all the interoperable rules that we designed.

This is the Sensor-based Linked Open Rules (S-LOR) tool. The SWoT generator has predefined-

templates to build semantic-based IoT application. The templates will referenced these pre-defined

set of rules classified by domains.

Figure 10. Rule directory

 Code example: Interpreting IoT

data and getting M3 suggestions

Several steps need to be achieved to interpret IoT data (see Figure 11):

 Loading M3 ontologies, datasets which have been generated in the M3 template.

 Loading M3 data.= which has been generated by the M3 converter.

 Interpreting IoT data using the Jena reasoned

 Executing the M3 SPARQL query which has been generated in the M3 template

 Parse the result and build the user interface , control actuators or send notification, etc.

http://sensormeasurement.appspot.com/?p=m3api

See documentation (section Tutorial):

http://sensormeasurement.appspot.com/documentation/M3APIDocumentation.pdf

Jena tutorial:

http://jena.apache.org/tutorials/rdf_api.html

Code example:

// STEP 1: Loading M3 domain knowledge and m3_data

Model model = ModelFactory.createDefaultModel();

InputStream in = new FileInputStream(PATH_FILE + m3_data);

// m3_data has been generated with the M3 converter

model.read(in, fileURL);//read all ontologies generated in the M3 template (.owl)

model.read(in, fileURL);//read all datasets generated in the M3 template (.rdf)

in.close();

Jena tutorial:

http://jena.apache.org/documentation/inference/

Code example:

// STEP 2: Interpreting M3 data

http://sensormeasurement.appspot.com/?p=m3api

Reasoner reasoner = new GenericRuleReasoner(Rule.rulesFromURL(PATH_FILE +

LinkedOpenRules*.txt));

// LinkedOpenRules*.txt: rules generated in the M3 template

reasoner.setDerivationLogging(true);

InfModel infModel = ModelFactory.createInfModel(reasoner, model); //apply the reasoner

// infModel has been updated with high-level abstraction

Jena tutorial:

http://jena.apache.org/tutorials/rdf_api.html

Code example:

// STEP 3: Getting M3 suggestions

// Executing the SPARQL query:

Query query = QueryFactory(m3_sparql); // m3_sparql has been generated in the M3 template

ResultSet results = QueryExecutionFactory.create(m3_sparql, model)

String m3_suggestions = ResultSetFormatter.asXMLString(results)

The main task of the develop is to design a user-friendly interface or control actuators, etc.

according to the high-level abstractions deduce by M3 or the M3 suggestions provided by M3.

Code example:

 // STEP 4: Parsing and displaying m3_suggestions to build the IoT application

// or control actuators, alerting, etc.

Figure 11. Code example to interpret IoT data and get M3 suggestions

 S-LOR Limitations

S-LOR has some limitations:

 S-LOR works only with simple sensors such as thermometer, rainfall sensors. Some more
complicated sensors such as camera provide images that cannot be proceed by S-LOR. For
this reasoning, an objective is integrating the KAT toolkit based on machine leaning
techniques to deal with more complicated sensors.

 How the Semantic Rule repository can be automatically updated with new rules provided by
the experimenters (knowledge producers). Adding a new rule in the repository is easy.
However, dealing with redundancy and overlapping rules is more complicated. For this, we
need to check correctness and completeness of rules. Correctness and completeness have
been checked manually.

 Redesign the Jena rules as SPARQL construct since SPARQL construct to encourage
interoperability since SPARQL is a W3C recommendation.

TO DO:

Correctness and completeness have been checked manually.

Add table example:

http://sensormeasurement.appspot.com/documentation/NomenclatureSensorData.pdf

 S-LOR Citations

Please do not forget to cite S-LOR:

 Sensor-based Linked Open Rules (S-LOR): An Automated Rule Discovery Approach for IoT

Applications and its use in Smart Cities. 3rd International ACM Smart City Workshop (AW4city) in

conjunction with 26th International World Wide Web Conference (WWW 2017), April 3-7 2017,

Perth, Australia. Amelie Gyrard, Martin Serrano, Soumya Kanti Datta, Joao Bosco Jares,

Muhammad Intizar Ali

 Enrich Machine-to-Machine Data with Semantic Web Technologies for Cross-Domain

Applications. IEEE World Forum on Internet of Things (WF-IoT), Seoul, Korea, March 6-8, 2014

Amelie Gyrard, Christian Bonnet and Karima Boudaoud

 Book Chapter: A Review of Tools for IoT Semantics and Data Streaming Analytics. Book: The

Building Blocks of IoT Analytics - Internet-of-Things Analytics. Martin Serrano and Amelie Gyrard

 Demo paper: Helping IoT application developers with Sensor-based Linked Open Rules

7th International Workshop on Semantic Sensor Networks, in conjunction with the 13th

International Semantic Web Conference (ISWC) October 19-23, 2014, Riva del Garda, Trentino

Italy. Amelie Gyrard, Christian Bonnet and Karima Boudaoud

 References

[1] Enrico Daga, Luca Panziera, and Carlos Pedrinaci. A basilar approach for building web apis on

top of sparql endpoints. 2015.

[2] Amelie Gyrard, Christian Bonnet, and Karima Boudaoud. Helping IoT application developers

with sensor-based linked open rules. In SSN 2014, 7th International Workshop on Semantic Sensor

Networks in conjunction with the 13th International Semantic Web Conference (ISWC 2014), 19-23

October 2014, Riva Del Garda, Italy, 10 2014.

[3] Albert Merono-Penuela, Christophe Gueret, and Stefan Schlobach. Linked edit rules: A web

friendly way of checking quality of rdf data cubes. In 3rd International Workshop on Semantic

Statistics co-located with 14th International Semantic Web Conference (ISWC 2015), 2015.

http://www.riverpublishers.com/book_details.php?book_id=364
http://www.riverpublishers.com/book_details.php?book_id=364

